Oil Sands: Silicon Valley of the North? Recycling Liabilities into ASSETS

• opportunities for **conservation** + generating **clean green energy** now, in Alberta To: Vance MacNichol, Chair, from Jorg Ostrowski, president and partner,

ACE-Alternative & Conservation Energies Inc., Oil Sands Consultations,

Alberta Department of Energy,

North Petroleum Plaza, 7th floor, 9945-108 St.,

Edmonton, Alberta Canada T5K 2G6

1-877-644-4695/310-0000 + (780) 644-4695

Calgary AB T3L 1V9, P: (403) 239-1882, F: (403) 547-2671

Web: http://www.ecobuildings.net

9211 Scurfield Drive N.W.,

Email: <ido@ecobuildings.net> draft #1

1.00) Preface (innovation only):

[1.01] This is an overview only, not an in-depth study. It is a position paper only of some ideas that may not currently be part of the debate about oil sands development. It highlights a few mandatory requirements, no different than any other business, and some very sustainable opportunities, if bundled together with the controls noted herein. It is a carrot and stick method to progress, with maximum optimization and minimal degradation, based on 30 years of professional work in sustainable development, familiarity with the site, and a good knowledge of emerging markets, free-market mechanics and legal instruments. This is a work-in-progress, as resources allow.

2.00) Professional Background: ACE-Inc. and its partners:

- [2.01] have been in practice and business for 30 years undertaking sustainable development projects
- [2.02] have done consulting to Suncor and are familiar with the oil sands having spent time there
- [2.03] have worked with Fort McKay and Anzac First Nations
- [2.04] are pragmatists active in the "real world", not hypothetical academics or theologians in dreamland
- [2.05] Jorg Ostrowski was the first consultant that proposed an integrated, sustainable and pedestrian vision and urban design plan of the entire downtown Toronto waterfront in 1972-3 to recycle, covert and transform a 96 acre brownscape of industrial blight into a popular and vibrant destination point, where people and culture could thrive, a greenscape, now called "Harbourfront".

3.00) Alberta's Precarious Economy (the need + opportunity to diversify):

- [3.01] Alberta's economy is totally dependent on only 2 industries: the oil patch and agriculture (thin ice)
- [3.02] Alberta's economy is at the mercy of oil, a volatile, unstable and unpredictable marketplace
- [3.03] oil and gas is a declining sunset industry with perhaps 5-10 years left in supply and demand
- [3.04] annual growth rate for solar is about 40% 1-4; oil and gas, <10% 5, 6
- [3.05] for every \$1,000,000 invested:
 - a) energy efficiency creates 36.3 jobs 7, 8, 9
 - b) renewable energy (PV) creates 12.2 jobs 7, 8, 9
 - c) conventional energy creates 7.3 jobs 7, 8, 9
- [3.06] many oil firms have already diversified into "energy", some into renewable energy 10
- [3.07] Suncor seeks to be a "sustainable energy" company. It has invested \$100 M into renewables.
- [3.08] costs and complexity will drive oil and gas from below the ground, to above ground
- [3.09] agriculture is a significant growth sector. Farmers will be the new oil barrons, based on canola.
- [3.10] a government with vision would encourage Alberta oil and gas firms to diversify into solar
- [3.11] the Alberta (and Canadian) government should not subsidize oil and gas corporations, or any fossil fueled utility any longer. The true free-market price must be allowed to establish itself. As everyone knows, high costs are the most cost-effective incentive for "real world" conservation.
- [3.12] the Alberta (and Canadian) government should reward green clean energy and tax dirty energy that has a detrimental impact on the planet, people, business and the future

4.00) Political Winds (a quickly changing international political topography):

- [4.01] The authours believe that the renewable energy sector will totally eclipse many times, all revenues, economic benefit and job creation of the oil patch, in a fraction of the time, with a far greater return-on-investment and global benefit, without the massive liabilities of fossil fuels, driven by:
 - 1) free market opportunities (i.e. PERT/GERT 11):
 - 2) national security concerns (i.e. Middle East)
 - 3) new economic realities (i.e. cost of extraction is too expensive, technology too complicated) 4) new economic incentives (i.e. tax breaks such as Class 43.1 12)

 - 5) regulations: carbon limits, CO₂ taxes, building codes, procurement policies, gasoline taxes
 - 6) GHG caps (i.e. California)
 - 7) public demand and shareholder pressure

If not done in a responsible and benign manner, some purchasers, users and governments may well boycott such energy or switch to the competition, based on precedent.

5.00) Challenge to be met:

[5.01] This project, like most challenges in life, is all about turning liabilities into assets. How can an application for development permit be granted for oil sands expansion? Can such a development be an asset rather than a liability to present and future generations? This project is no different than any other development elsewhere in the world. It should be a positive contribution and legacy to the people, planet, economy and future, not a negative impact, detrimental burden, economic white elephant, national embarrassment, environmental liability or ongoing curse.

6.00) Position of the Proponents (applications for development must be governed):

- [6.01] Our position is grounded in convention. No business is run without control for the common good. Regulations and caveats are no different than the requirements of any of the following:
 - 1) Alberta E.U.B.

 - 2) the planning department of every city around the world (i.e. development/building permits) 3) "Rules of Professional Conduct", or "Code of Ethics" that are mandatory for all members in good standing of any professional society: AAA, ALAA, ALS, AMA, APEGGA, CBA, etc.
 - 4) any application before a court of law (Alberta Rules of Court have to be followed)

7.00) Proposed Mandatory Rules (The Quadruple Bottom Line):
7.01] Any development must be positive for people, the planet, business, and the future (Quadruple
Line). Six prerequisites for development permit are the following. Oil sands development must
\Box 1) be sustainable in the long run as defined by the performance requirements noted below
□ 2) establish an Ecolndustrial Park ¹³ (on-site synergistic and local economic relationships):
The depleted parts of the tar sands area could operate as a demonstration "Sustainable
Technologies Park ", based on combining the principles of an EcoIndustrial Park ¹³ with a
Centre for Alternative Technology as developed out of an abandoned quarry at Machynllet
Wales ¹⁴ . After 30 years, this centre is Europe's leading Eco-Centre.
□ 3) achieve net zero 15 operations re: consumption of:
a) fresh (but not reused) water
b) non-renewable energy
c) anthropogenic GHG emissions under the Kyoto protocol (CO ₂ , CH ₄ , N ₂ O)
d) precursors (i.e. CO, NO _x , VOCs)
e) other pollutants and heavy metals (SO ₂ , particulates, HC, Hg, Cr, Cd, Pb, Ni, As, SO _x)

- ☐ 4) meet "**energy plus**" requirements ¹⁶: a) "produced energy" must be greater than "embodied energy" + "operating energy" (more energy out than in), based on mixed-use architectural projects 16
- □ 5) achieve a benchmark **EcoFootprint**. This would be established upon consultation with Dr. Bill Rees of the University of British Columbia, based on his work on ecological footprints. 17

- □ 6) be a "net **Economic benefit**" (not drain), based on:
 - a) Life Cycle Thinking (LCT) 18
 - b) Life Cycle Management (LCM) ¹⁸
 - c) Life Cycle Costing (LCC) 18
 - d) Life Cycle Assessment (LCA) 18
 - e) Total Cost Accounting (TCA) 18
- f) Net Cost Benefit Analysis (NCBA)
- g) Cost Benefit Analysis (CBA) 18
- h) Economic Input/Output Analysis 18
- i) Energy & Environmental Accounting ¹⁸
- ☐ 7) have a value-added requirement:
 - a) the people of Alberta, especially local First Nations, must be able to use the land after reclamation, in a useful and uplifting manner, contributing joy, learning, value and health
 - b) the facilities must be left usable in other ways after all resources have been extracted
- □ 8) take advantage of the **Photovoltaic Opportunity** (while minimizing risk and damages):
 - a) to address the challenges and opportunities noted above, and to supply the growing world demand for low grade silicon ¹⁹ as sources for high grade silicon dwindle, the oil sands as a major source of low grade silicon for solar cell manufacturing (not semiconductor) on the premises must be explored, based on the following reasons:
 - 01) an abundant supply of sand is readily available and extracted anyway
 - 02) infrastructure is already in place: mining, transportation, processing, expertise
 - 03) sand is now dumped as landfill after processing as part of reclamation, whereas,
 - 04) the same sand should be processed into silicon for on-site manufacture of PV
 - 05) high temperature processing already available and used on-site
 - 06) win-win scenario: Oil Sand Photovoltaics are totally a <u>synergistic concept</u>: the more bitumen that can be extracted out of the tar sands, the better it is for the oil companies and the better the grade of silicon will be available
 - 07) one of the major players, <u>Suncor</u> has been wanting to be a <u>sustainable energy</u> <u>company</u> for many years. Perhaps other partners would also be interested?
 - 08) hydrogen by-products should be marketed as a renewable currency or fuel
 - 09) CO₂ should become part of the feedstock for the manufacturing process

"In the past, **low-grade silicon** was bought from semiconductor manufacturers for use in building solar cells. With improvements in the manufacturing process, silicon manufacturers are able to consistently produce the more profitable semiconductor-grade silicon. As a result, it is becoming difficult to buy **low-grade silicon**." ^{19d}

PV manufacturing is an <u>immense opportunity that must be explored for all Albertans</u>.

In summary, these are the conditions that the authours feel are **imperative** before approving any further development of tars sands in Northern Alberta.

8.00) Precedent:

□ 01) If large architectural developments ^{15, 16} can comply with such requirements and achieve such exemplary performance for common good, this should be even easier for all tar sands partners.

9.00) Bibliography:

□ 01) re: annual growth rate for **solar**: according to TVC:

http://www.techventures.org/news/index.php?releaseID=052

"The global photovoltaic market, a robust \$7.5B per year, has experienced annual growth rates of 30%, with last year's **rate** even higher at 54%. Global sales of modules exploded in 2004 exceeding 1 GW."

□ 02) re: annual growth rate for solar: according to "Seeking Alpha":

http://energy.seekingalpha.com/article/16341

"according to Solarbuzz, between 2001 and 2005, total annual solar power system installations increased globally from 345 MW to 1,460 MW, representing a compound annual growth rate of 43%, and global installations of solar power systems are expected to grow at a compound annual growth rate of 17% from 1,460 MW in 2005 to 3,250 MW by 2010. Solarbuzz forecasts continued strong growth globally, with sales increasing from \$9.8 billion in 2005 to an estimated \$18.6 billion by 2010, a 14% compound annual growth rate."

http://72.14.203.104/search?q=cache:mvGZknTqbWcJ:sres.management.dal.ca/Eco-

Environmental Studies, Faculty of Management, Dalhousie University, 1996

Debert/index.php+%22ray+cote%22+school+dalhousie+environment&hl=en&gl=ca&ct=clnk&cd=5 f) The Burnside Cleaner Production Centre, *Waste Minimization Fact Sheets*, School of Resource &

- g) Lowe, E. A., *Creating systems solutions for sustainable development through industrial ecology, Regional Resource Recovery, and Eco-Industrial Parks:* An Integrated Strategy, Verwertungsnetz Obersteiermark Innovation durch regionale Recycling-Netzwerke, Karl-Franzens-Universität Graz April 28-29, 1997: http://www.indigodev.com/Eipresrecov.html
- h) An Indigo Industrial Ecology Paper, *Creating systems solutions for sustainable development through industrial ecology*, Industrial Ecology Bibliography: http://www.indigodev.com/Biblio.html
- i) Lowe, E. A., Harris, R. J., Creating systems solutions for sustainable development through industrial ecology: British Petroleum's Decision on Climate Change, Taking Climate Change Seriously: British Petroleum's Business Strategy, Corporate Environmental Strategy, Winter 1998: http://www.indigodev.com/BPclim.html
- j) Mirata, Murat, *Industrial Symbiosis, A tool for more sustainable regions?*, Doctoral dissertation, the International Institute for Industrial Environmental Economics, Lund University, Sweden 2005
- k) U.S. D.O.E., *Brownfields Assessment Pilot Fact Sheet*, Cape Charles/Northampton County, VA: http://www.epa.gov/swerosps/bf/html-doc/northam2.htm
- I) Smart Communities Network, *Eco-Industrial Parks:* http://www.smartcommunities.ncat.org/business/ecoparks.shtml
- m) Cote R.P., Cohen-Rosenthal E., *Designing Eco-Industrial Parks: A Synthesis of Some Experiences*, Journal of Cleaner Production, Volume 6, Number 3, September 1998, pp. 181-188(8)
- □ 14) Centre for Alternative Technology, Machynlleth Wales: http://www.cat.org.uk/
- □ 15) Net Zero Energy (architectural) projects:
 - a) Canada: CMHC: http://www.cmhc-schl.gc.ca/en/inpr/su/neze/
 - b) England: i) Autonomous House, Southwell (Nottinghamshire), 1993
 - ii) Hockerton Housing Project, Hockerton near Southwell (Nottinghamshire), 1998
 - iii) BedZED (Beddington Zero Energy Development), Sutton (London), 2002
 - c) U.S.: *Building America Zero Energy Home*, in Frisco, and Anderson Sargent home, both in Dallas TX. Habitat for Humanity, http://www.eere.energy.gov/buildings/news_detail.html/news_id=9112
- □ 16) Energy Plus (architectural) projects:
 - a) Germany: Energy Plus Village, 1999: http://live.pege.org/2005-plus-energy-village/solar-ship.htm
 - b) Denmark: Plus Energy House, 1996: http://www.folkecenter.net/gb/tour/plusenergy/
- □ 17) Ecological Footprint:
 - a) Rees, W.E. 1996, The Footprints of Consumption: Tracking Ecospheric Decline, The Trumpeter, 14:1:2-4
 - b) Rees, W.E., M. Wackernagel. 1996. *Urban Ecological Footprints: Why Cities Cannot be Sustainable (and Why they are a Key to Sustainability)*. Environmental Impact Assessment Review 16: 223-248.
- □ 18) Real Costs of Energy:
 - a) Hubbard, H., The Real Cost of Energy. Scientific American, Vol. 264, No. 4, April, 1991, pp. 36-42
 - b) Choi, J., Stuart, J.A., Ramani, K., *Decision Support Tools for Environmental Product and Process Management: Survey and Needs*, Environmental Informatics Archives, Volume 1 (2003), pp. 25-37: https://engineering.purdue.edu/PRECISE/escm.html https://www.iseis.org/EIA/fulltext.asp?no=03004
- □ 19) Low Grade Silicon:
 - a) re: <u>low grade silicon</u>: *New Technique to Handle Metal Defects in Low-Grade Silicon*, http://www.azom.com/details.asp?newsID=3720
 - b) Yang, S., Researchers develop technique to use dirty silicon, could pave way for cheaper solar energy, UC Berkeley News, 15 August 2005
 - c) Cheap, low-grade silicon may reduce cost of solar cells, Advanced Materials & Processes, ASM, 2005 http://goliath.ecnext.com/coms2/gi_0199-4998035/Cheap-low-grade-silicon-may.html#abstract
 - d) Penick, T., Louk, B., *Photovoltaic Power Generation*, Dec. 1998, p. 12 http://www.teicontrols.com/notes/TechCommunicationsEE333T/FinalReport-PhotovoltaicPowerGeneration.pdf
 - e) Office of Technology Assessment, U.S. Congress: Studies of the Environmental Costs of Electricity, October 1994, "The federal government incorporates environmental cost concepts into a wide variety of legislation and regulations." http://www.converger.com/OTAEnvironmentalCost/OTA5~1.htm. Also see Fang, J. M., Galen, P. S., Issues and Methods in Incorporating Environmental Externalities into the Integrated Resource Planning Process, NREL/TP-461-6684 (Golden, CO: NREL).